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Hamiltonian formulation of site percolation in a lattice gas? 

K K Murata 
Sandia Laboratories$, Albuquerque, New Mexico 87185, USA 

Received 6 June 1978 

Abstract. Site percolation in an interacting lattice gas is formulated as the limit of a iandom 
Potts’ model. Explicit results are also given within a Bethe cluster approximation for 
near-neighbour interactions and percolation lengths. 

1. Introduction 

A well known formulation of random bond percolation theory is that of Kastelyn and 
Fortuin (1969). By formulating random bond percolation theory as a regular Potts’ 
model continued to ‘unphysical’ values of 4, the number of states per site in  the Potts’ 
model, their formulation permits the use of Hamiltonian methods in the random bond 
percolation problem, as opposed to less familiar generating function methods. The 
Hamiltonian formalism was, for example, exploited by Harris et a1 (1975), who applied 
renormalisation group and other techniques to the problem. 

A Hamiltonian formulation for random site percolation was recently suggested by 
Giri et a1 (1977) and also by Kunz and Wu (1978), who use a Potts’ model but with 
interactions between t spins on a covering lattice, where z is the coordination number 
of the original lattice. The point of this article is to discuss a different Hamiltonian 
formulation for site percolation and simultaneously generalise it to include the case of 
percolation in an interacting lattice gas. In addition, the results for percolation for both 
attractive and repulsive interactions will be derived within the Bethe cluster approxi- 
mation, using the new formulation. 

The advantage of the present formulation is its conciseness. (Compare it ,  for 
example, with Coniglio and Essam (1977).) Not surprisingly, it allows an unusually 
concise derivation of results within the Bethe cluster approximation. Of course, so long 
as only this level of approximation is desired, any one of the equivalent formulations of 
Kikuchi (1970), Odagaki (1975) or Coniglio (1975) can be used. However, it is hoped 
that the present formulation will be more generally useful. 

I t  should be stressed, to avoid confusion, that the present problem is quite different 
from that of the more familiar problem of dilute magnets. In dilute Ising models, 
percolation and thermodynamic properties are of course intimately related; in fact, in 
the zero-temperature ‘percolation limit’, the calculation of thermodynamic properties 
becomes equivalent to that of the percolative properties. In the present problem one is 
asking a completely different question; namely, what are the percolative properties 
(such as critical site fraction) when the site random variables are no longer independent 

t This article sponsored by the US Department of Energy under Contract AT(29-1)-789. 
A US Department of Energy Facility. 
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but are governed according to lattice gas statistics? In contrast to dilute magnets, the 
thermodynamic properties in the present problem are those of the lattice gas, or regular 
Ising model in a field, and do not reflect in any obvious fashion the percolation 
properties (such as the critical fraction) of the lattice gas. However, as will be shown, 
the converse is certainly not true. 

The percolative properties of a lattice gas may be of interest when components of a 
percolative system interact and are not quenched but are free to equilibrate (spatially). 
One could also consider the case of a dilute magnet of magnetic and non-magnetic 
atoms, which is quenched from a finite temperature T. If the magnetic interactions are 
relatively weak, the percolative properties will correspond to the thermodynamic 
distributions in the binary alloy at T, which are not strictly random. 

2. The random Potts model 

The Hamiltonian of interest is 

%!=-Jn 1 ninj-Hn 1 n , - J  1 ninj(SA,A,-l)-HC (8Ari-l). (1) 
inn) i ( n n )  i 

Here, Jn and Hn are the near-neighbour interaction strength and chemical potential for 
the lattice gas, respectively; ni = 0 or 1 is the lattice gas random variable, and A i  is the 
Potts' model random variable which can have any of q different values: 1 , 2 ,  . . . , q. The 
random variables n, and A ,  are both taken to be unquenched in the present case in 
contrast to dilute spin models, where ni is usually taken to be quenched?. Percolative 
properties in the lattice gas governed by J ,  and Hn are recovered in the limits: 

J+m,  4 + 1 ,  H + 0'. (2) 

In order to give the precise relationships, one starts with the partition function for 
(1): 

= Tr,,A e-'% 

J ,  1 nini +Hn 1 ni) 
I 

The second line is obtained by now standard techniques (Kasteleyn 1969), where N is 
the total number of sites and p = 1 -e-'' is the bond probability. Here, { y }  is the set of 
ways one can introduce near-neighbour bonds on the restricted lattice where only those 
sites with ni = 1 are considered present; % ( y )  is the set of clusters present in one 
particular configuration y ;  R, and L, are the number of bonds present and bonds 
missing, respectively, from the restricted lattice; and n, is the number of sites in the cth 
cluster in % e ( ? ) .  

I An alternative formulation is possible if one uses quenched random variables. The site diluted Ising model 
is known to be equivalent to the site percolation problem in the 'percolation limit'. One need only distribute 
the quenched site variables ni according to lattice gas statistics. Such a formulation with quenched random 
variables can be brought into Hamiltonian form by using spin glass 'replica methods'. See, for example, 
Stephen and Giri (1978). 
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In the limit of J++m, p tends to unity, and only the maximally connected 
configuration ym contributes. The quantity 

where y = PH, therefore represents the fraction of sites in finite clusters. In the above, 
the brackets denote the thermodynamic average 

where 

2, = -J,, nini-H,, 1 ni 
( n n )  i 

is the lattice gas Hamiltonian. The fraction of sites which are part of the infinite cluster 
is therefore 

( 5 )  F ( x ,  PJn) = x - X f  

where x is the density 

The mean square cluster size is also given by 

y - 0 +  

The pair connectedness Cii, the probability that i and j lie within the same finite cluster, 
can be defined in a manner similar to S,  by introducing inhomogeneous fields y i  at each 
site. The relation is 

Thus, by calculating the partition function for the general Hamiltonian and then 
taking appropriate limits, site percolation properties of the lattice gas are automatically 
generated. Random site percolation is of course obtained for the special case J ,  = 0. 

One can readily extend the above formulation to cases where the pairwise inter- 
actions J,, and J extend beyond near neighbours. Thus the continuum limit can be 
considered. In  particular, in a problem where the percolation or connectivity length 
extends beyond near neighbours, one simply assigns a non-zero J between each pair of 
sites (i, j )  which are to be considered ‘connected’ when filled and then takes the limit 
J + CO for each such J in the final formulae. The percolation length, or range of J, can of 
course be different from the interaction length, or range of J,. 
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3. The Bethe cluster approximation 

The above Hamiltonian formulation will be used here to derive results within the Bethe 
cluster approximation. One can proceed for J, > 0 and outside the two-sublattice 
region for J,, < O  by taking a single cluster consisting of a central site and its near 
neighbours. The effects of the rest of the lattice will be represented by fields Hk and H', 
analogous to H,, and H, respectively, but which act in place of them on the near 
neighbours. Their values are determined by the usual translational invariance assump- 
tions 

a In Zc 1 a h &  - lim -- x "  lim -- 
~ - + a  ay,, ~ - . m  z ay:, 
a-+ l  a + l  

where yn = PH,,, y i  = PHL, z is the coordination number, and ZC is the 'partition 
function' for the finite Bethe cluster. Similarly 

where y = PH and y '  = PH'. Thus, the joint lattice gas and percolation problem is 
reduced to evaluating Zc, which is straightforward. It is given by 

For completeness, the thermodynamic properties are discussed first. The equation 
(8) for x becomes 

However, the self-consistency condition (the second equality of (8)) can be written as 

so that 

Equations (12) and (13) can of course be solved to eliminate yL and thus obtain the 
standard equation of state. 

Analogous equations for xf can be obtained from (9). Namely, one has 
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where it is understood that y shall be set to 0' at the end of the calculation. The 
self-consistency condition from (9) is written 

Now, from (13), (14) and (15) it follows that one can write the percolation probabilty 

F ( x )  = x ( l -  Q') (16) 

as 

where 

1 1 
Q =exP((I_1)Y - z Y ' ) .  

From (12) and (15) one can derive the equation 

Q = (1 -2)  exp(-y/z)+iQ'-' exp(-2y/z) 

where 

These results for B and Q are similar in form to those previously obtained for 
random site percolation. If one sets J,, = 0 and y = 0, then x = 2 and (16) and (17) 
become the equations for random site percolation (Fisher and Essam 1961). 

Expressions for the percolation threshold can be given directly. First, Equations 
(12) and (13) can be solved for exp(-yL): 

(18) 
1 -2x + [ ( 1 - 2 ~ ) ' + 4  exp(PJ,,)(l -x)x]''* 

2x exP(-YA) = 

The percolation threshold from (17) is known by analogy to the random case (Fisher 
and Essam 1961) to be located at 

(2)* = (2 - 1)y.  (19) 

Equation (19) can be rewritten, using (17b) and (18), in the form 

(20) 
2 - 1  

X* - 
( z  - 2)' exp(PA)+ 2z - 3 ' 

Equation (20) was first derived by Kikuchi (1970), and is valid outside the two-phase 
region (except in a metastable sense) for J,, > 0 and outside the sublattice ordering 
region for J, < 0. 

Because of the absence of a more obvious relation between percolation and 
thermodynamics of the lattice gas, it is interesting to note that the percolation threshold 
x *  for J,, > 0 plotted as the full curves for z = 6 and z = 12 in figure 1 occurs to the left of 
the spinodal (chain) curves which mark the limit of stability of the metastable phase. 
The other set of curves with long-short dashes marks the coexistence line; T,  is the 
reduced temperature, in units of the critical temperature for the repulsive case. 



86 K K Murata 

X 

Figure 1. The percolation threshhold x*  (full curves) for attractive interaction Jn > O .  The 
long-short dashed curves show the coexistence line; the chain curves the spinodal. The 
arrows denote the high temperature asymptotes for the two coordination numbers Z. 

One can derive an equation for the spinodal ay,,/ax = 0 for comparison to (20): 

A comparison shows that for z > 2, Xsp,nodal> x* ,  at least for the Bethe lattice. If this 
relation is correct in general, then the line for the threshold x* cannot penetrate the 
unstable region. Presumably, then, an extension of the two-dimensional Monte Carlo 
results of Odagaki et a1 (1975) to include values of T, between 2 and 1 should actually 
show a zero slope for the threshhold dx*/dx = 0 at x = 1/2.  

In figures 2 and 3, the probability P E  p/x that a particle is part of an infinite cluster 
is plotted for z = 6 and 12, respectively. The full curves give percolation at equilibrium, 
calculated in the two-phase region under the coexistence curve by assuming macro- 
scopic phase separation and using the 'lever rule' to compute amounts of the two 
phases. For comparison, the broken curves give percolation of the single metastable 
phase. If these lines are extended into the unstable region by solving (12)-(17) there, no 

X 

Figure 2. For z = 6 and attractive interaction, the full curves represent the probability P 
that a particle is in an extensive cluster under equilibrium conditions, with phase separation 
if necessary. The dotted curve is the behaviour in the metastable phase. 
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1 0  

P 

c 5  

i 

X 

Figure 3. As in figure 2, but for z = 1 2  

anomalies in P reflecting the instability directly are found. In addition, no anomalies 
are found in P for T, = 1 for x in the vicinity of the critical point. 

4. The region of sublattice ordering for J. < 0 

The Bethe cluster method can be extended to the region of sublattice, or ‘antifer- 
romagnetic’, ordering for repulsive J,, < 0 by the method of assuming inequivalent A 
and B sublattices. The new self-consistency conditions involve a ‘partition function’ ZA 
for an A site surrounded by B sites: 

Z,A.=ZC(H,+H,,A, HL + H ; A ,  H ’ + H L )  

and one for the converse situation 

zg = Zc(H,, + H,a, Hk + HLB, H’ + Hk) 

The combined equations of state and self-consistency conditions become 

a i a  
x A =  lim - In ZA= lim - - In Zg 

z a y k B  
o-rl 

ayna  
0 - 1  

One should remember that HkA and H i  act on the neighbours of A sites which are in  
the B sublattice. 

In addition the finite cluster fraction is obtained from 

i a  
x ~ A =  lim - - In ZA 

J-rW 1-q  a y  
q+l 

y + o +  
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with an analogous equation for xm, where XfA,  for example, is the probability that an A 
site is in a finite cluster. The percolation probability P is again given by (5) with 

1 x T(xa f XB),  xf E +( XfA + XfB). 

In computing the above percolation probability P, adjacent particles are of course 
considered connected even though they are in different sublattices. 

The new equations (22) and (23) do not simplify in a significant way and will not be 
discussed in detail. However, for completeness it is possible to give an equation for the 
lines of critical points found at zero staggered field, H,, =&,A- HnB) = 0, which are 
indicated for z = 6 and z = 12 by the chain curves in figure 4. This equation is 

for J ,  < 0. The interior of the dome-shaped regions in figure 4 is the region of sublattice 
order. 

A numerical solution of (22) and (23) shows that sublattice order is important for 
near-neighbour connectivity. The percolation threshold x* given by the full curves of 

X 

Figure 4. The percolation threshhold x *  (full curve) for repulsive interaction for different z. 
The broken curves indicate the region of two sublattice ordering. 

x 

Figure 5. A plot of P for repulsive interaction and z = 6 ,  showing non-monotonic behaviour 
due to sublattice ordering. 
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X 

Figure 6. As in figure 5, but for z = 12. 

figure 4 shows a sharp break at the bicritical point marking the point of entry into the 
region of sublattice order. The detailed behaviour of P ( x )  = P ( x ) / x  is shown in figures 
5 and 6 .  

5. Conclusions 

A new, concise formulation of percolation in an interacting lattice gas has been 
discussed and applied to the Bethe lattice. General effects on percolation due to lattice 
gas ordering have been discussed briefly, including new results in the region of 
sublattice ordering. 
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